Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production.
نویسندگان
چکیده
BACKGROUND 2,3-Butanediol (2,3-BD) with low toxicity to microbes, could be a promising alternative for biofuel production. However, most of the 2,3-BD producers are opportunistic pathogens that are not suitable for industrial-scale fermentation. In our previous study, wild-type Bacillus subtilis 168, as a class I microorganism, was first found to generate only d-(-)-2,3-BD (purity >99 %) under low oxygen conditions. RESULTS In this work, B. subtilis was engineered to produce chiral pure meso-2,3-BD. First, d-(-)-2,3-BD production was abolished by deleting d-(-)-2,3-BD dehydrogenase coding gene bdhA, and acoA gene was knocked out to prevent the degradation of acetoin (AC), the immediate precursor of 2,3-BD. Next, both pta and ldh gene were deleted to decrease the accumulation of the byproducts, acetate and l-lactate. We further introduced the meso-2,3-BD dehydrogenase coding gene budC from Klebsiella pneumoniae CICC10011, as well as overexpressed alsSD in the tetra-mutant (ΔacoAΔbdhAΔptaΔldh) to achieve the efficient production of chiral meso-2,3-BD. Finally, the pool of NADH availability was further increased to facilitate the conversion of meso-2,3-BD from AC by overexpressing udhA gene (coding a soluble transhydrogenase) and low dissolved oxygen control during the cultivation. Under microaerobic oxygen conditions, the best strain BSF9 produced 103.7 g/L meso-2,3-BD with a yield of 0.487 g/g glucose in the 5-L batch fermenter, and the titer of the main byproduct AC was no more than 1.1 g/L. CONCLUSION This work offered a novel strategy for the production of chiral pure meso-2,3-BD in B. subtilis. To our knowledge, this is the first report indicating that metabolic engineered B. subtilis could produce chiral meso-2,3-BD with high purity under limited oxygen conditions. These results further demonstrated that B. subtilis as a class I microorganism is a competitive industrial-level meso-2,3-BD producer.
منابع مشابه
Production of (2R, 3R)-2,3-butanediol using engineered Pichia pastoris: strain construction, characterization and fermentation
Background 2,3-butanediol (2,3-BD) is a bulk platform chemical with various potential applications such as aviation fuel. 2,3-BD has three optical isomers: (2R, 3R)-, (2S, 3S)- and meso-2,3-BD. Optically pure 2,3-BD is a crucial precursor for the chiral synthesis and it can also be used as anti-freeze agent due to its low freezing point. 2,3-BD has been produced in both native and non-native ho...
متن کاملEngineering Bacillus licheniformis for the production of meso-2,3-butanediol
BACKGROUND 2,3-Butanediol (2,3-BD) can be used as a liquid fuel additive to replace petroleum oil, and as an important platform chemical in the pharmaceutical and plastic industries. Microbial production of 2,3-BD by Bacillus licheniformis presents potential advantages due to its GRAS status, but previous attempts to use this microorganism as a chassis strain resulted in the production of a mix...
متن کاملDeletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis
BACKGROUND D-2,3-butanediol has many industrial applications such as chiral reagents, solvents, anti-freeze agents, and low freezing point fuels. Traditional D-2,3-butanediol producing microorganisms, such as Klebsiella pneumonia and K. xoytoca, are pathogenic and not capable of producing D-2,3-butanediol at high optical purity. Bacillus licheniformis is a potential 2,3-butanediol producer but ...
متن کاملProduction of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
BACKGROUND 2,3-Butanediol is a chemical compound of increasing interest due to its wide applications. It can be synthesized via mixed acid fermentation of pathogenic bacteria such as Enterobacter aerogenes and Klebsiella oxytoca. The non-pathogenic Saccharomyces cerevisiae possesses three different 2,3-butanediol biosynthetic pathways, but produces minute amount of 2,3-butanediol. Hence, we att...
متن کاملMetabolic engineering of Serratia marcescens MG1 for enhanced production of (3R)-acetoin
BACKGROUND Optically pure acetoin (AC) is an important platform chemical which has been widely used to synthesize novel optically active α-hydroxyketone derivatives and liquid crystal composites. RESULTS In this study, slaC and gldA encoding meso-2,3-butanediol dehydrogenase (meso-2,3-BDH) and glycerol dehydrogenase (GDH), respectively, in S. marcescens MG1 were knocked out to block the conve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology for biofuels
دوره 9 شماره
صفحات -
تاریخ انتشار 2016